
Number partitioning via quantum adiabatic computation

V. N. Smelyanskiy 1,* and U.V. Toussaint 2
1NASA Ames research Center, MS 269-2, Moffet Field, Ca 94025-1900 and

_Max-Planck-Institute for Plasma Physics, Boltzmannstr, 2 D-85748 Garchin 9
(Dated: February 19, 2002)

We study both analytically and numerically the complexity of the adiabatic quantum evolution
algorithm applied to random instances of combinatoriM optimization problems. We use as an exam-
ple the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap
separating the ground and exited states of a system during the execution of the algorithm. We show
that for computationally hard problem instances the size of the minimal gap scales exponentially
with the problem size. This result is in qualitative agreement with the direct numerical simulation of
the algorithm for small instances of the set partition problem. We describe the statistical properties
of the optimization problem that are responsible for the exponential behaviour of the algorithm.

PACS numbers:Valid PACS appear here

Since the discovery by Shor [1] nearly a decade ago
of a quantum algorithm for efficient integer factorization
there has been a rapidly growing interest in the devel-
opment of new quantum algorithms capable of solving

computational problems that are practically intractable
on classical computers. Perhaps the most notable exam-

ple of such problems is that of combinatorial optimization

(COP). In the simplest case the task in COP is to mini-
mize the cost function ("energy") E, defined on a set of

2n binary strings z = {zl,... ,z_} zj = 0, 1, each contain-
ing n bits. In quantum computation this cost function
corresponds to a Hamiltonian Hp

Hp = E, Iz>(zl (1)

where the indices zj = 0, 1 and the summation is over 2n
states Iz) forming the computational basis of a quantum

computer with n qubits. State Izj)j of the j-th qubit
is an eigenstate of the Pauli matrLx 6_ with eigenvalue

S i = 1 - 2zj (Sj = +1). It is clear from the above that
the ground state of Hp encodes the solution to the COP
with cost function Ez.

COPs have a direct analogy in physics, related to find-
ing ground states of classical spin glass models. In the

example above bits zj correspond to Ising spins Sj. The
connection between the properties of frustrated disor-
dered systems and the structure of the solution space

of complex COPs has been noted first by Fu and An-

derson [2]. It has been recognized [3] that many of the
spin glass models are in almost one-to-one correspon-

dence with a number of COPs from theoretical computer

science that form a so-called NP-complete class [4]. This
class contains hundreds of the most common computa-
tionally hard problems encountered in practice, such as

constraint satisfaction, traveling salesmen, integer pro-
gramming, and others. NP-complete problems are char-
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acterized in the worst cases by exponential scaling of the

running time or memory requirements with the prob-
lem size n. A special property of the class is that any
NP-complete problem can be converted into any other

NP-complete problem in polynomial time on a classical
computer; therefore, it is sufficient to find a deterministic

algorithm that can be guaranteed to solve all instances
of just one of the NP-complete problems within a poly-

nomial time bound. However it is widely believed that

such an algorithm does not exist on a classical computer.
Weather it exists on a quantum computer is one of the
central open questions. Ultimately one can expect that

the behavior of the new quantum algorithms for COPs
and their complexity will be closely related to the prop-

erties of quantum spin glasses.

Farhi and co-workers suggested recently a new quan-

tum algorithm for solving combinatorial optimization
problems which is based on the properties of quantum

adiabatic evolution [5]. Running of the algorithm for
several NP-complete problems has been simulated on a
classical computer using a large number of randomly gen-
erated problem instances that are believed to be com-

putationally hard for classical algorithms [6-8]. Results
of these numerical simulations for relatively small size

of the problem instances ( n < 20) suggest a quadratic
scaling law of the run time of the quantum adiabatic

algorithm with n. In [5, 9] special symmetric cases of
COP were considered where symmetry of the problem al-
lowed to describe the true asymptotic behavior (n -+ co)

of the algorithm. In certain examples considered in [9]
quantum adiabatic algorithm finds the solution in time
polynomial in n while simulated annealing requires ex-
ponential time. However, so far there are no analytical

results on the asymptotic behavior of the algorithm for

the general case of randomly generated hard instances of
NP-complete problems.

In what follows we derive the asymptotic complexity
of the quantum adiabatic algorithm for the Set Par-

tition Problem (SPP). It is one of the six basic NP-
complete problems that are at the heart of the theory

of NP-completeness [4]. It can be formulated as corn-





is a "joint" densitydefinedasfollows

p_(E',E) = _ p_,.(E') a(E - Ez) (6)
z

(7)
$1

Here Ak,l is a Kronecker delta. Function D(z, z') above
computes the number of bits that take different values

in the bit-strings z and z', it is a so-called Hamming

distance between the strings

7%

D(,,z') (8)
j=l

Conditional density pr,.(E') in (7) determines the dis-
tribution of energies E,., for the strings z' obtained

from z by flipping r bits. Similar to Eq. (3), {.,.) in

(6),(7) denotes averaging over the small energy interval
(E - *7/2, E + r//2) that, however, includes many indi-
vidua/ partition levels. For r = 1 there are exactly n

strings z' on a Hamming distance r =1 from the string
z. Partition energies corresponding to these strings equal

los - 2ajSjl , 1 < j < n (cf. (2)). One can show that for
Ez < 2 the distribution of these energies is nearly uni-

form in the range (0, 2 - E,) due to the fact that spins

Sj are nearly equally distributed between 4-1 values for
configurations with l_s[ << n. Similar arguments apply
for the case r = n - 1. Using a coarse-graining window
such that n -1 << r] << 1 one can obtain in the range of

energies E', Ez < I the following result:

p ( 'lEz) = + O(1)
r= 1,n-l, n>>l. (9)

For large r,n- r >> I one can calculate the condi-

tional densities (6) for a given set of {at} by evalua-
tion of the appropriate integrals with the steepest descent

method, in a similar manner to the derivation of of p(E)
in Eqs.(3)-(5). Here we will skip the derivation and only

provide the result that we found to be in a very good
agreement with the numerical simulations of SPP even

for relatively small n ,,_ 20 - 30. State density functions
in (6) axe given each by a sum of Gaussians for E, E' > 0
and have a broad maximum at the origin. Near the max-
imum we have:

p,-(E'IE, ) _ p,.,(E') _ o'_

= (4 (1 - - r >>1.

This result applies in a range E', & << {nc(r/n)] 1/2. We

note that conditional density (7) is uniform there and
does not depend on E' and z after the coarse-graining

over the small interval r/of energies E_, in (10). Window

size 7/> (_)-*.
Eqs. (9),(10) suggest the structure of the low-lying par-

tition configurations. Bit strings z' that are on a Ham-

ming distance r from a given string z correspond to a sub-

set of partition energies with average spacing _ (r_)-1

which does not depend on z in the range E,,Ez, < 1
for alt r. The greater the Hamming distance between

the strings - the closer their partition energies can be to
each other - and vise versa. This is a basic property of

SPP that gives rise to an exponentially large number of
local minima in the relatively narrow range of energies
O(1). In a typical instance of random SPP correlations

between the Hamming distances to a given string (e.g.,
the solution to SPP) and partition energies essentially
vanishes.

In the quantum adiabatic algorithm [5] one specifies

the time-dependent Hamiltonian H(t) = H(t/T)

/}(r) = (1 - r) V + r Hp, (11)

where r = tiT is dimensionless "time". This Hamil-

tonian guides the quantum evolution of the state
vector JO(t)) according to the Schrbdinger equation

iOl_b(t)}Ot = H(t)[O(t)} from t = 0 to t = T, the run
time of the algorithm. Hp is the "problem" Hamiltonian

given in (1). V is a "driver" Hamiltonian, that is de-
signed to cause the transitions between the eigenstates

of Hp. In this algorithm one prepares the initial state of
the system ¢(0) to be a ground state of H(0) = V, In

the simplest case

n--1

v = - I¢(0)>= 2 Iz>,
j=0 z

where a_ is a Panli matrix for j-th qubit. Consider in-

stantaneous eigenstates I¢_(v-)} of /_r(r) with energies

h_(r) arranged in nondecreasing order at any value of
r c (o,1)

gl¢_> = A_I¢_>, _= 0,1,...,2_- 1. (_3)

Provided the value of T is large enough and there is a

finite gap for all t 6 (0, T) between the ground and ex-
ited state energies, 9(r) = A_(r) -ko(r) > 0, quantum
evolution is adiabatic and the state of the system I_b(t)}

stays close to an instantaneous ground state, leo(tiT)}
(up to a phase factor). Because H(T) = lip the final
state 10(T)) is close to the ground state I¢0(r = 1)) of
the problem Hamiltonian. Therefore a measurement per-

formed on the quantum computer at t = T (r = 1) will
find one of the solutions of COP nearly with certainty.

In the Landan-Zener picture a quantum transition away
from the adiabatic ground state occurs most likely in the
vicinity of the point r* C (0, 1) where the energy gap

g(r) reaches its minimum (avoided-crossing region). The
probability of the transkion, 1 - I{Ib(T)[¢o(r = 1))]2, is

small provided that

T >> ---g---, groin = min [AI(r) - Ao(r)] (14)
Agmin O<r<l

Here IH_II = I(dpllff-fl¢O)[r=r.. Even in the cases that are

more complex than the Landan-Zener "2-level" picture





of nonadiabatictransitionstheanalysisofminimumgap
9mi, can provide an important test for the complexity of
the quantum adiabatic algorithm. E.g., if one can show
that for a random COP gmi, decreases exponentially fast

with the problem size n while IH_ll does not decreases
with n that would be a strong indica{ion for exponential

complexity of the algorithm in such problem.

As suggested in [5] the quantum adiabatic algorithm

can be recast within the conventional quantum comput-

ing paradigm using the technique introduced by Lloyd
[19]. Continuous-time quantum evolution can be approx-
imated by a time-ordered product of unitary operators,
e-i (1-r_) V5 e-ir_Hp6, corresponding to small time inter-

vals (t_,tk + 6). Operator e -i(1-_k)y6 typically corre-
sponds to a sequence of I(2)-qubit gates (cf. (I2)). Op-

erator e -i*_re_ is diagonal in the computational basis [z)
and corresponds to phase rotations by angles E,A. Since

in the case n << b, the average separation between the

neighboring values of Ez is 1/p(E) = C9(2-'_), the quan-
tum device would need to support a very high precision
of physical parameters (like external fields, etc) to control
small differences in phases, O(2-'_). Since this precision

scales with n exponentially it would strongly restrict the
size of an instance of SPP that could be solved on such

quantum computer (this technical restriction is generic
for COPs that involve high-precision numbers). To avoid
this restriction we define a new cost function that takes

values on a scale which is logarithmic in 1/p(E). I.e., we

chose the cost to be an oracle-type function £z that takes
asetofM+lintegervaluesek =-M+k, 0<k<M

gz = -k + M, for Wk _< Ez < COk+l, (15)

Wk=(2 k-1) w0, k=O,...,M. (16)

We set £z = EM : 0 for all states with Ez >_ WM where

WM is a control parameter chosen sufficiently large so
that M = O(n). The space of 2 _ states Iz) is divided
into M + 1 subspaces £k, each determined by Eqs. (15)

and (16) for a given k

M

= (17)
k=0 zE£_

Note that subspace £0 contains the solution(s) to the
SPP. Dimension do of £0 is controlled by the value of

COo in (16) which is another control parameter of the
algorithm. We set w0 = Kip(O) where the integer

K _ do >> 1 is independent of n and determines how
many times in average one needs to repeat the quantum
algorithm in order to obtain the solution to SPP with

probability close to 1.
Operator f-fp projects any state I¢) onto the states

with partition energies in the range 0 _< Ez < WM. We
assume that wM << (E} so that the density function (5) is

nearly uniform in this range. Therefore the dimensions of
the subspaces £k grow exponentially with k: dk = do 2k
for k < M. This simplification does not affect the com-

plexity of a quantum algorithm that spends most of the

time in "annealing" the system to much smaller partition
energies, WM >> E_ _ Emin = (-9(n 1/2 2--n)-

We now consider a stationary SchrSdinger equation

(13) and obtain the minimum gap gmi, (14) in the asymp-
totic limit n -+ oc. To proceed we need to introduce a

new basis of states Ix) = Izl)l ® Ix2)2 ®-..® Ix_}_

where state Ixy}j is an eigenstate of the Pauli matrix 9_
fo the j-th qubit with eigenvalue 1 - 2xj = =t=1. Driver
Hamiltonian V can be written in the following form

v: vmzm, z : I ><xl.(is)

For a particular case given in Eq. (12) we have V_ :

2m - n. Matrix elements of Z m in a basis of states Iz)
depend only on the Hamming distance D(z, z') between

the strings z and z'

z2 , = (19)

r
q:O p:O

(20)

We now rewrite Eq. (13) in the form

T

;kg): A-a------vHPI_>' a=a(T) :l--v. (21)

(we temporarily drop the subscript/_ indicating the num-
ber of a quantum state and the argument r in LI,and A).

&From (15)-(21) we obtain the equation for the ampli-
tudes _I,, = <9[z) in terms of the coefficients I_m

T_ 2 -_
+ 7-_ Jo(.,.,)¢'.,g.,, ze£k_k_z --

,X- a_%
Z _@Z

Zk--a_(X)=l--_&(),)ek, _=_&,_, (23)
Z I

y_ = y_(a) = ,x 2-gV_' o < r < n.
rrL----1

We now make a key observation that the (coarse-grained)

distribution of matrix elements Jz)(_,_,) for a given z is
determined by ,Jr (l) and conditional density p_,_, (E) (6).

We compute a cumulative quantity

z_z'

zE£_

F_(A)- /_s(1) s(A)= dr¢(r/n) fl_(l) (26)
2M-k ,

where # = f'lM/_/2 and A,k(1) is a small correc-
tion that will be described below. Function s(A) can be
evaluated using the explicit form of _(l) that decays

rapidly with r. E.g., for IA - aV01 << 1 one has

Y<(A): 2 "(re+r) 2-n(lnr+7). (27)

rn=l





(9_ is an Euler's constant) and s(A) _ -in 2/(2a). Ac-

cording to (27), Jr ._ (n/2 - r) -I (r_)-1 for n/2 - r >> 1,

and the integrand in s(A) is a smooth function of r. This
corresponds to the interesting fact that contributions to

the sum in(25) from states z with D(z, z _) = r << n are
small (O((r/n)l/2). In fact, the dominant contribution

is of "entropic" nature: it comes from the large number
of states z E A;k corresponding to Hamming distances,

1 <:< r _< n/2, and contributing each a small weight J_.
The energies of these states are distributed, for a given r,

according to P_,z, (E) _- fi_, and this explains why F_(A)
does not depend on z' (cf. (10)).

We note that the entropic term Fk scales down with k

exponentially fast (oc 2_-M), proportionally to the size of
the window cok+l -wk of partition energies corresponding

to z E £k (cf. (16)). When this window becomes too
narrow the contributions to the sum in (25) from the

states z with r = D(z, z') ,_ 1 are no longer described
by the density of states p_, due to the discreteness of

the partition energy spectrum E.. E.g., for a given z' in
this ease there could be either one or none of the states

z E /2k with D(z,z') = 1, depending on the choice of
#. Contributions to the sum in (25) from these states
strongly depend on z r and axe described by the term fz,,k

Jl(,x) al,D(,,,,) + o(n-s), z &. (2s)

Here the omitted higher-order terms correspond to

D(z,z r) _> 2. We note that the first-order term in

(28) becomes greater than the entropic term Fk (25) for
M - k _> log2(# n2).

Based on the above properties of JD(,,z,) we look for
the solution of Eq. (23) in the avoided-crossing region as
a sum of two terms

k_z--_,+_., zE£k, l<k<M (29)

Here gk and g. are slowly- and fast-varying functions of

z, respectively, that satisfy the following equations:

Z_ u-, = 2-'_ [e (a - aY0) -_ + s(A)_ , (30)

z'_£o wE£0

We note that the amplitudes _,_ here correspond to the
ground state(s) ]w) of the final Hamiltonian, HpIw } =

¢olW) and the decomposition (29) applies only to ampli-
tudes with z ¢ /2o. The above system of equations is
closed by adding the equation for _,, given by (23) with

z = w and (29) taken into account.

Eq. (30) for gz is coupled to the rest of equations via

relation between the cumulative terms • = _5 + q, + Oo-

Here • = _zgzuz i8 a part of • (23) contributed by

a slow-varying component and similarly, _ = _, E._'z.

We compute the cumulative term _ using equations for

_,. in (30) and also Eqs. (23)-(26)

wEZ:o

where _(x) = x/(1 + x). In the initial stage of the al-

gorithm the amplitudes of the solution states are small

and 1¢01 _ ]_] _" 2 -_. When these terms are neglected

_ _, and (30) gives a dosed-form algebraic equation

for A which solution A_(r) _ a(_')Vo - 2#7 + O(p 2) ac-
curately tracks the adiabatic ground state energy, from
r = 0, up until the small vicinity of the avoided-crossing,

T -_ _-* (see below) where [_01 _ 1. In this region (and
also for T > r*) one needs to retain the terms c_ @0 in

Eq.(30) that couple it to the equations for g, and _w.
We express the components g, in terms of the ampli-

tudes • ,_ by inverting the equation for _, in (30) with
sequential iterations. The result is substituted into the

sum _z_z;o Jd(z,w)uz that enters equation for _w (cf.
(23)). A key observation is that the dominant contribu-
tion to this sum comes from the states z that are one

bit-flip away from the states w: r = d(z,w) = 1 (cf.

Eq.(28)). This can be seen from the fact that amplitudes
g, corresponding to not very large r << n, are scaled with
n as n -(_+l) and also from the form of J_ above. The

contribution to the sum from the rest of terms (r > 1) is

O(n-2). Finally, after excluding _ from the equations

for _,_ in (23) and using (30),(32) we obtain a closed-
form equation for A. We give it below in the region of
interest ['r - 1/2 t << 1

- - : (33)
(1+ ,- ln2 +

The form of ,k_(_-) is given above and A_0(r) _ re0 +

1/2 is another branch of the eigenvalues that eventually
approaches e0 for r --+ 1.

The minimum gap between the two roots of (33) is
9min ": _ A 2-n/2 and it is achieved at the point r = r*

where the branches A_(T), A_(T) cross each other, T*
I/2 + log2(do/#)/(4n ). Based on the above analysis one
can estimate the matrix element H_I "_ n in (14). Then
the complexity of the quantum adiabatic algorithm is,
do "H01/groin _ (g do)-12n" To logarithmic accuracy the
results are in agreement with the numerical simulations

results given above.
It follows from the discussion above that eigenvaiue

branch A_ (r) corresponds to an extended state _ _z[z)
with exponentially small individual amplitudes, [u_l "_

2 -n/2 (cf. (30)). On the other hand Afo(r) corresponds to

a locMized state (lOol, leel ._ 1) and therefore the coupling

between the two states is exponentially small (cf. r.h.s.

in Eqs. (30) and (33)). A similar picture applies to the
avoided- crossing of the extended state energy A_ (T) with
energies of localized states Ark(_-) corresponding to z _ £_
with k << n. The existence of the extended eigenstate

of H(r) at later times, r > r*, whos properties do not
depend on a particular instance of SPP can be explained

as follows. According to (I8)-(23), matrix elements of the
Green function associated with the driver Hamiltonian

(z'j(), - _V)-lJz) depend only on a Hamming distance
r = d(z, z'); on the other hand it follows from the above
that the joint distribution of energies p_ (E, E') factorizes
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FIG. 1: Logarithmic plot of Cmln vs n for randomly gener-
ated instances of SPP with 25-bit precision numbers. Vertical

sets of points indicate results of different trials (_ 100 trials
for each n, except n=17). Median values of Cmln are shown
with rectangles. Linear fit to the logarithmic plot of median
values for n between 11 and 17 is shown by the line and gives
In Cmin _ 0.55n (Cmln ",_2 TM) . Very close result is obtained
for the linear fit if all data points are used instead of the me-
dian values. Insert: plot of C(T) vs T for n--15, precision
b=25 bits, do---22. Point 1 indicated with the arrow refers to
the minimal value of complexity at T ---- Train _--- 22.67 where
the total population of a ground level po(Tmin) ----0.15. Point
2 refers to the value of T where po(T) = 0.7.

for not too Iarge energies (cf. [18]), and therefore the

structure of the problem is being averaged out during
the quantum evolution that begins from the symmetric
state (12).

We also study the complexity of the algorithm by nu-

merical integration of the time-dependent Schrhdinger
equation with Hamiltonian H(t) and initial state I¢(0))
defined in Eqs. (11),(12),(15)-(17). Here we relax the
condition WM << (E> used above in the analytical treat-
ment of the problem; in simulations the value of M is set

1automatically to be an integer closest to og 2 }-_q=0 aj
(cf. (16)). We introduce a complexity metric for the

algorithm, C(T) = (1 + T)do/Po(T) where po(t) =

]_,e£o J¢_(t)J 2" A typical plot of C(T) for an instance
of the problem with n:15 numbers is shown in the insert

of Fig. 1. At very small T the wavefunction is close to
the symmetric initia.l state and the complexity is ,-_ 2n.

The extremely sharp decrease in C(T) with T is due

to the buildup of the population po(T) in the ground
level, E_ = _0, as quantum evolution approaches the adi-

abatic limit. At certain T = Train the function C(T)
goes through the minimum: for T > Tmi n the decrease in

the number of trials do/Po(T) does not compensate any-
more for the overall increase in the runtime T for each

trial. For a given problem instance the "minimal" com-
plexity Groin --- C(Tmin) is obtained via one dimensional

minimization over T. Plot of the complexity Cmin for
different values of n in Fig. 1 appears to indicate the
exponential scaling law, C_in _ 2 TM for not too small

values of n > 11.

In conclusion, we have studied both analytically and

numerically, the complexity of the the quantum adiabatic
algorithm applied to large random instances of SPP. We
obtained the asymptotic behavior of the minimal gap

that scales exponentially with problem size n. Analyt-
ical results for the algorithm's complexity are in qual-

itative agreement with the results of numerical simula-
tions of the algorithm for small-to-moderate values of n.

We also developed a general technique for the analyzes
of quantum spin-glass problems based on the separation

of fast- and slow-varying parts of the wavefunction and
the related picture of avoided crossing between the en-
ergies of extended and localized states (as the system

parameters vary). This approach can be applied to dif-
ferent examples of random COPs where one searches for

the solution using continuous-time quantum algorithms.
Among the other applications is the analysis of tunneling

phenomenon in the low-temperature dynamics of random
magnets.
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